
The Structure of an MXF File:
The Physical view
Paper supplied courtesey of Omneon, Inc.

There are 2 ways of looking at an MXF file: the Physical View, which examines exactly how and where the
bits and bytes are stored into the file, and the Logical View, where a more human-understandable represen-
tation of the file is presented as a series of timelines along which events occur. Effectively, the Physical View
is a literal description of the makeup of the file, whereas the Logical View is more concerned with how the
media is actually synchronized and played. This paper will examine the Physical View – a separate paper
will cover the Logical View.

1

There are 2 basic types of MXF clip: The first are those
where the essence (media) is actually stored in the
same file as the Metadata that refers to it. These files
are said to have Internal Essence. The second type is
that where the essence is stored in separate files to the
Metadata, and these files are said to have External Es-
sence. In this case, the decoder first reads the Metadata
file, and that Metadata points to the files in which the
individual pieces of essence are stored. To the outside
world, the Metadata file - which is an MXF file in terms
of its layout, but simply doesn’t have any media - is
the clip, the essence often being stored in a separate
directory which is not directly seen by the decoder.

KLV Wrapping
All data in an MXF file is encapsulated in KLV pack-
ets, so an MXF file is actually just a collection of KLV
triplets stored one after the other. Basically, the prin-
ciple behind KLV wrapping is to provide each piece
of data with a unique Key, which can be examined by
a decoder to ascertain whether that specific piece of
data is important to the decoder (or if it can even de-
code it). If not, the decoder can jump the data item
and move on to examine the next one. This becomes
an important technique for quickly locating specific
items in an MXF file, as will be seen later in this paper.

File Partitioning

Media files can be extremely large, and parsing a mul-
ti-Gigabyte file as a single entity can place significant
strain on a decoder. As such, it is often useful to break
the file up into multiple partitions. This is a commonly
used technique when dealing with media files, and
offers several advantages, easing the memory re-
quirements for a decoder, for example (as it now only
needs enough memory to store a full partition as its
worst case, rather than the entire file). Partitions are
also useful in streaming applications, where it is not
possible to determine when any individual decoder
will start to ingest the streaming data. Partitions, in
this case, can be used giving the decoder clear loca-
tions to begin decoding the stream, rather like bus
stops give passengers clear locations of where to get
on a bus. For these reasons (and many others), MXF
files are often broken up into partitions.

The basic structure of an MXF file is shown in Fig. 1.
By definition, all MXF files contain exactly one Header
Partition, 0 or more Body Partitions, and 0 or 1 Footer
Partition. Header Partitions and Body Partitions can
contain essence (the actual media), but a Footer Parti-
tion cannot – it can only contain Metadata. Since the
Body and Footer Partitions are optional, then the sim-
plest possible MXF file simply comprises the Header
Partition. Operational constraints mean that a single
partition file is quite restricted in duration, so in prac-
tice there are usually more partitions than that, with
the excess essence being stored in one or more Body
Partitions.

The Footer Partition, if present, can contain a repeat of
the Metadata that is contained in the Header Partition
(often referred to as the “Header Metadata”). The rea-
son for this is simple: often, it is not possible to know

the value for all Metadata items when the clip starts
to record – you may be performing an open-ended
record, for example, so the duration of the recording
is unknown when the file is created. By putting a copy
of the Header Metadata in the Footer Partition, these
issues can easily be addressed - there are mechanisms
that allow you to know which copy you should look at
when you read the files, so there is no ambiguity on
where to read the data from

Figure 2 is a diagram of an MXF file with all of its op-
tional components. As you can see, the file structure
can grow in complexity, but all of the general princi-
ples still apply.

The Header Partition
The Header Partition is the first partition of the file,
and is comprised of a Header Partition Pack (which is
used to tell the decoder that this partition is the Head-
er Partition), followed by the Header Metadata itself.
After the Metadata, we see an Index Table, or more
correctly, an Index Table Segment, as it only relates to
the part of the file stored in its associated partition
– if you add all the Index Table Segments together,
you get the Index Table for the file. Index Table Seg-
ments, which are really only used for MPEG files, turn
a timecode number into a byte offset. This byte offset
tells the decoder that timecode value hh:mm:ss:ff is
N bytes from the start of the Essence Container (the
Essence Container is the data construct which en-
capsulates the actual essence – more on that later).
One thing worth noting is that the Index Table can
reference the essence that comes immediately after
it in a partition, or reference the material in the par-
tition that comes immediately before it. Both modes

are perfectly legal. Note also that in some cases, the
index tables are placed in their own separate parti-
tions, so that one may make a rule that only one en-
tity – Metadata, Index Tables or Essence - is placed
in any single partition. Index Tables are not needed
for essence which is defined as Constant Bytes per En-
try (CBE). In these cases, since each frame is exactly
the same length, you can use simple mathematics
to determine the offset from the start of the Essence
Container for any Timecode value. Finally, the actual
essence is then encoded into the Essence Container
itself. Placing some essence into the Header Partition
is totally legal according to the SMPTE specifications,
but it is optional, and up to the manufacturer.

Body Partitions
Following the Header Partition, we have the first
Body Partition, which is used to store additional es-
sence. The Partition Pack (now called the “Body Par-
tition Pack”) tells the decoder that this partition is a
Body Partition, and that it contains essence which
is a continuation of the previous essence. This may
seem unnecessary, but MXF allows for multiple Es-
sence Containers to be multiplexed together. This
option is beyond the scope of this paper, but it does
mean that it is important to indicate which Essence
Container this partition is a continuation of. After the
Partition Pack, there is the option to repeat of the
Header Metadata. While the MXF specification allows
for this option, it is very rarely adopted, and has there-
fore been left off the diagram for the sake of legibility.
Next comes the essence, again with an optional Index
Table Segment either before or after it (or in a sepa-
rate partition of its own) In our example, there follows

2

Header Partition Body Partition Body Partition Footer Partition

Header
Partition

Body
Partition

(optional)

Footer
Partition

(optional)

header
partition

pack

content
package 0

content
package 1

content
package 2

content
package 3

content
package 4

content
package 5

content
package 6

content
package 7

content
package (n)

header
metadata

index
table

essence
container

body
partition

pack

header
metadata

index
table

essence
container

body
partition

pack

index
table

body
partition

pack

random
index pack

(RIP)

essence
container

System Item Picture Item Audio Item Data Item

system
element

system
element

system
element

Audio
Element

Data
ElementPicture Element Compound Element

Compound Item

Generic Container

Audio
Element

Figure 1 . Basic structure of an MXF file

Header Partition Body Partition Body Partition Footer Partition

Header
Partition

Body
Partition

(optional)

Footer
Partition

(optional)

header
partition

pack

content
package 0

content
package 1

content
package 2

content
package 3

content
package 4

content
package 5

content
package 6

content
package 7

content
package (n)

header
metadata

index
table

essence
container

body
partition

pack

header
metadata

index
table

essence
container

body
partition

pack

index
table

body
partition

pack

random
index pack

(RIP)

essence
container

System Item Picture Item Audio Item Data Item

system
element

system
element

system
element

Audio
Element

Data
ElementPicture Element Compound Element

Compound Item

Generic Container

Audio
Element

Figure 2 Structure of a typical MXF file (including options)

a second Body Partition, which completes the storage
of the essence.

The Footer Partition and the RIP
The Footer Partition is the final partition in most MXF
files, although in reality the presence of a Footer Parti-
tion is optional. Once again, the Partition Pack is used
to indicate to the decoder that this is a Footer Parti-
tion, and in our case, the Footer Partition contains
a copy of the Header Metadata (this time, all items
should be complete). The presence of this repeated
Metadata is also optional, but this option is often
adopted – many files do indeed contain a copy of the
Header Metadata in the Footer.

Most files terminate with something called a Random
Index Pack (RIP). This is another optional table, which
tells the decoder where the start of each Body Parti-
tion is located. This can aid in non-linear access to the
contents of the file. The RIP, if it exists, is stored at the
end of the file, so that a decoder always knows where
to go to find it.

Metadata Repetition

All partitions have the option to repeat the Header
Metadata. This could be very important in some
streaming operations, ensuring that a decoder may
start to receive data at any point in the transfer, and
have the opportunity to quickly have access to Meta-
data values. In practice, in the broadcast market, it is
very rare for a file to have copies of the Header Meta-
data in all partitions –usually only the Footer partition
has such a copy.

Complete and Incomplete Partitions

To examine this topic, Let’s consider the Header
Partition in slightly more detail – the same informa-
tion holds true for all partitions, but the amount of
Metadata will vary, depending on whether or not the
Header Metadata has been replicated in any specific
partition.

As mentioned earlier, the Header Partition begins
with the Header Partition Pack. The term “Pack” in MXF
parlance simply denotes a grouping of KLV items
which must appear in a specific order. The Header
Partition Pack is a simple data construct, which indi-
cates that this is an MXF Header Partition, along with
a status flag which indicates how complete the Meta-
data is. MXF uses 4 parameters to indicate the status
of a partition, which are encoded into a single byte in
the Header Partition Pack. It should be noted that all
partitions contain some Metadata. The Partition Pack
itself has a couple of Metadata items to provide in-
formation about the location of the partition which
precedes it.

The first two parameters are Closed and Open. If a par-
tition is marked as “Closed”, it means that all Metadata
which must be present (as per the MXF specification
suite) have been filled in correctly. Conversely, if a
partition is marked as “Open”, it means that some of
the Metadata has not been filled in, or is just plain
wrong. The location of the Footer Partition (as an
offset from the Header Partition) would be one such
parameter – it won’t truly be known until the file is
closed. As such, decoders may read the Metadata in
an Open partition, but it shouldn’t trust the informa-
tion absolutely. The remaining two parameters are
Complete and Incomplete. These can sometimes seem
confusing, but the terms have very specific meaning.
If a Partition is marked as “Complete”, then it means

“You will find that the MXF specifications
leave a lot of options open to manufac-
turers, which has led to some confusion
and interoperability problems. Many of
these are now being ironed out as the
format matures”

3

AMWA White Paper

Figure 3: KLV recursion (the “value” is made up of KLV packets

Key Length
Value

K L V K L V K L V K L V K L V

4

that either it doesn’t contain any Header Metadata, or
that all the required properties/values in the Header
Metadata are correctly filled in. Marking a partition as
“Incomplete” flags that some of the Metadata values
were unknown at the time the partition was com-
pleted. Clip duration is one such parameter (don’t
confuse duration with Footer Partition location – they
are most definitely not one and the same thing). So a
file can be “Open and Incomplete” – meaning that the
location of the footer cannot be determined from this
data, and some of the parameter values are default or
guesses (and therefore likely to be wrong), or “Closed
and incomplete” – meaning that you can determine
where the Footer partition is, but that some of the

Metadata values are defaults or guesses, or “Open
and Complete” – meaning that you can’t locate the
footer from this data, but the Metadata values are all
correct, or finally “Closed and Complete” – you can lo-
cate the Footer partition, and all the Metadata values
are correct. Obviously, Header Metadata should only
be completely trusted if it came from a “Closed and
Complete” partition – which is usually in the Footer.
The MXF spec does allow file writers to go back into
other partitions, and update their Header Metadata
so that they are also “Closed and Complete”, but this
very rarely happens in real-time systems.

Metadata

The Metadata itself is simply a number of sets which
contain Structural Metadata. The topic of sets is ex-
amined in the Omneon white paper entitled “Encod-
ing Data Into MXF Files”, so it will not be covered here.
Metadata is mandatory in the Header Partition, but
optional in all other partitions. Metadata falls into 2
distinct classes – Structural and Descriptive.

Structural Metadata is largely intended for machine
consumption – it details the encoding used to com-
press the video and audio (if compression is applied),
the aspect ratio of the video, how the video and audio
should be synchronized, the physical arrangement of
the bytes that make up the file. After the Structural
Metadata Sets come the Descriptive Metadata Sets.

Descriptive Metadata is for humans to read: Title, cam-
eraman, producer, series title, reel number, camera ID,
script version etc. etc. There is a predefined scheme
called DMS-1 (for Descriptive Metadata Scheme – 1)
which attempts to detail all of the possible Metadata
items that may be important to a specific use case –
there will undoubtedly be more as we move forward

All of the above can seem pretty complex and over-
whelming, but in a nutshell, the Header Partition tells

a decoder what kind of file its reading, tells it how
valid its information is likely to be (and potentially
where to go to get more accurate data), gives it infor-
mation on how the file goes together technically so
that the decoder can play it (or flag that it can’t play it
for some reason), and allows the decoder to interact
with human-readable information about the file or
present it to the user (Obviously, this is all data that
the decoder needs before it can begin to decode the
material which is contained in the rest of the file).

The Footer Partition, on the other hand, largely gives
us a place to store another copy of the Header Meta-
data, where some values may be more up-to-date
than those in the Header Partition. Body Partitions are
used to store additional essence, although in theory
they could also contain replications of the Header
Metadata.

Essence can be placed into the Header Partition or
into Body Partitions, but never into the Footer Par-
tition. When the specifications were written, it was
recognized that new compression technologies were
bound to be developed over time, and that if MXF
didn’t allow for these new compression technologies
to be “plugged in”, then it would have a very short
lifespan indeed. To overcome this, the main MXF
specification document (SMPTE 377M) details some-
thing called an Essence Container. The idea of the Es-
sence Container is to define a simple mechanism for
essence to be wrapped in KLV, to optionally associate
it with an Index Table, to allow for interleaving of es-
sence within it, to once again identify the decoding
capabilities required to play it, and to uniquely iden-
tify which kind of Essence Container it is. The concept

of the Essence Container is (as is always the case with
MXF) a very flexible idea, designed to allow the ad-
dition of new Essence Containers as time progresses.
Having said that, there is currently only one Essence
Container specified in the MXF documentation, and
that instance is called the Generic Container. It was de-
signed to carry all of the major essence types in use
at the time that the spec was written, and there are
individual SMPTE specifications on exactly how you
put each essence type into the Generic Container.

A precautionary note: MXF experts often use the
terms Essence Container and Generic Container inter-
changeably – even in the same paper. Don’t get con-
fused – at the moment, they are one and the same
thing (that would change if ever another Essence
Container type was developed). The Generic Contain-
er is defined in SMPTE 379M.

Fundamentally, the Generic Container (or GC as it’s
often called) breaks the essence up into sections,
which are called Content Packages, and these pack-

ages are laid end-to-end until all of the essence has
been stored (see Figure 3). It is entirely possible that
the Generic Container be so large as to not fit into a
single partition, but this does not cause a problem.
The specification allows for GCs that extend across
several partitions: a SMPTE Unique Label (UL) in the
Partition Pack of each partition identifies the GC that
any individual partition belongs to.

In practice, clips have Content packages of only two
types. The first is a single Content Package contain-
ing all of the essence for the file. Each individual es-
sence (video, audio, timecode, etc) is presented in its
entirety, followed by the next essence type. So all of
the video may be encoded first, followed by all of the
audio etc. Termed Clip Wrapping, this may not be too
convenient for streaming files, as you have to wait

until all of the video is delivered before you get any
of the audio. The second choice solves that problem.
Frame Wrapping, means that each Content Package
contains all of the data for a single frame of the file.
So video and audio for any specific frame are deliv-
ered in the same Content Package. It is important to
note that this does not mean that all of the Content
Packages are the same size, particularly in the case of
long–GOP MPEG. In most cases, the essence of a clip
will be Frame Wrapped.

Figure 4 shows the basic layout of a Content Package.
As you can see, the Content Package is further divid-
ed into Essence Items, each of which represents one
type of material in the clip. The MXF specifications
state that the Content Package can contain any com-
bination of the essence items, but you can only have
one Essence Item of each type per Content Package
(i.e. you can’t have two Data Items in a single content
Package), they must be in the same order in every
Content Package, and they must always be present. If

5

AMWA White Paper

Encoding the Essence into Partitions

Header Partition Body Partition Body Partition Footer Partition

Header
Partition

Body
Partition

(optional)

Footer
Partition

(optional)

header
partition

pack

content
package 0

content
package 1

content
package 2

content
package 3

content
package 4

content
package 5

content
package 6

content
package 7

content
package (n)

header
metadata

index
table

essence
container

body
partition

pack

header
metadata

index
table

essence
container

body
partition

pack

index
table

body
partition

pack

random
index pack

(RIP)

essence
container

System Item Picture Item Audio Item Data Item

system
element

system
element

system
element

Audio
Element

Data
ElementPicture Element Compound Element

Compound Item

Generic Container

Audio
Element

Figure 3. The Generic
Container is a con-

tiguous sequence of
Content Packages

you have no data for a specific item in a specific Con-
tent Package, you still have to have the item; you just
don’t put any data into it.

The Content Packages can be presented in any order
(as long as it’s consistent), with the exception of the
System Item. If a Content Package has more than one
Item, then the System Item should be present (there
are those loose specs again – it is possible to not have
the System Item in a multi-item Content Package and
still have a legal file, in the strictest sense). If the Sys-
tem Item is present, it must be the first item in the
Content Package.

The first byte of the key for the first Essence Item can
be used to indicate the start of the Content Package,
for synchronization purposes (the MXF spec allows
for other ways of determining the start of the Content
Package, but doesn’t define what those other ways
are). This is made easier by the fact that the first 12
bytes of the keys for Essence Items are all the same,
and that combination of values is not used for any
other key, so when you see that specific sequence of
12 bytes, you know you are looking at the start of the
key for an Essence Item. The start of the GC is indi-
cated by the first occurrence of the key of the first Es-
sence Item in the Content Packages.

Note that even the individual Essence Items are then
broken down into Essence Elements. In simple terms,
each element is an individually KLV wrapped entity,
containing some amount of data. Each item can con-
tain a maximum of 127 Elements.

Picture Item

In the case of the Picture Item, it is unlikely that you
will have more than one Picture Element, although

you certainly could have two — one for video, and
one for associated key, for example.

Audio Item

You are very likely to have more than one Audio El-
ement — the audio could be a stereo pair, in which
case you would have 2 audio elements — one for the
left channel, and one for the right. Or you could have
6, for discrete 5.1 audio, or you may have 8: discrete
5.1 plus a stereo mixdown. Remember, though, that
you can only have a single audio item.

System Item

System Items are used to store Essence Item-related
Metadata. An example of this would be frame-by-
frame timecode values. It is not really practical to
embed this into the Header Metadata, due to the
complexity of relating that Metadata to a specific
timecode value. Most elemental video streams in-
clude Timecode encoded somewhere in the essence
itself. Extracting that Timecode and putting it into the
System Item makes it easier to decode — you don’t
have to parse the essence for the Timecode data. That
is one of the reasons that the System Item (if it exists)
is always the first item in the Content Package — you
can check for valid timecode values before decoding
the essence.

Data Item

The Data Item, if it is present, is used to store continu-
ous data that are neither picture nor audio – subti-
tles, teletext and other VBI data are examples of the
essence types stored in the Data Item.

6

Header Partition Body Partition Body Partition Footer Partition

Header
Partition

Body
Partition

(optional)

Footer
Partition

(optional)

header
partition

pack

content
package 0

content
package 1

content
package 2

content
package 3

content
package 4

content
package 5

content
package 6

content
package 7

content
package (n)

header
metadata

index
table

essence
container

body
partition

pack

header
metadata

index
table

essence
container

body
partition

pack

index
table

body
partition

pack

random
index pack

(RIP)

essence
container

System Item Picture Item Audio Item Data Item

system
element

system
element

system
element

Audio
Element

Data
ElementPicture Element Compound Element

Compound Item

Generic Container

Audio
Element

Figure 4. Structure of a Content Package

Compound Item

The Compound Item, if it is present, is used to store
essence streams that are intrinsically interleaved and
difficult to extract to individual Items. An example
of this would be DV essence. DV essence has video
and audio interleaved in a complex manner, so it was
deemed easier to define a separate Item for this than
force manufacturers to de-interleave the data. In al-
most all cases, if a Compound item is present in a Con-
tent Package, the Picture Item will not be — there may
be additional Audio Items, though, as DV essence only
has 2 channels of audio.

Conclusion

The physical layout of an MXF file can seem quite
intimidating at first glance, but the principles them-
selves are relatively straightforward. Most of the com-
plexities come from the large number of options a
programmer may choose from – all of which are per-
fectly legal. This abundance of options can make file
interchange difficult, but by constraining some of the
options to pre-defined choices via a document called
an “Application Specification”, interoperability can be
much simplified.

To reduce the information provided in this paper into
simple blocks, MXF files are made up of:

One, and only one Header partition, which contains
important Metadata that a decoder will need before
it starts to decode the file, and may include essence
(most do)

Zero or more Body Partitions which store additional
essence as required, and may include a repetition of
the Header Metadata (most don’t). The frequency and
size of these partitions is left up to the designer

Zero or one Footer Partition, which may include a
repetition of the Header Metadata (most do). This is
the logical place to start when looking for accurate
Metadata in a file.

Zero or one Random Index Pack. If present, this is al-
ways the last KLV in the file, and indicates where each
o f the partitions are located.

The essence itself is stored in the Generic Container,
and segmented up into Content Packages of various
sizes. In most cases, the Content Packages contain all
of the essence associated with an individual frame of
the clip, but it is possible to encapsulate all of a specif-
ic essence type in a single Content Package, in which
case that essence is said to be Clip Wrapped.

The adoption of all of these concepts into the struc-
ture of an MXF file results in format independence,
both in the spatial and temporal domains. Coupled
with the ability to include or exclude essence types at
will, it is extensible into multiple use cases and mar-
ket segments, with the promise to allow seamless in-
terchange of Media and the vital Metadata that goes
with it.

This white paper was supplied to the AMWA by Omneon,
Inc.

Further white papers on MXF, AAF, XML and SOA ap-
plied to advanced media workflow can be download-
ed from the AMWA website at www.amwa.tv. 3/2010

7

AMWA White Paper

